Lesson I - Brønsted-Lowry Acids and Bases

Learning Outcomes: All

- State the meaning of the term acid and base (5.1.3 a)
- Most
 - Write an ionic equation for the reaction of an acid with metals, carbonates, bases and alkalis (5.1.3 b)
- Some
 - Describe and use the term conjugate acid- base pairs and label them in an equation (5.1.3 c)

Background Information

The H+ ion is the active species in acids and is always involved in acid-base reactions.

- Bases are substances which react with and neutralise acids
- Alkalis are water-soluble bases which produce OH- ions in aqueous solution. They
 - turn red litmus blue or UI paper blue
 - have a pH greater than 7
 - react with acids to form a salt and water only
 - NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H₂O(l)
 - form weak or strong alkalis depending on the equilibrium position
- Acids produce 'H⁺' ions in aqueous solution. They
 - turn blue litmus red or UI paper red
 - have a pH of less than 7
 - react with bases or alkalis to form a salt and water only
 - react with a metal carbonate to form a salt, carbon dioxide and water
 - 2HCl(aq) + CaCO₃(s) \rightarrow CaCl₂(aq) + CO₂(g) + H₂O(l)
 - react with metals to form a salt and hydrogen
 - $2HNO_3(aq) + Mg(s) \rightarrow Mg(NO_3)_2(aq) + H_2(g)$ (The metal must be above hydrogen in the Reactivity Series)
- The reaction between an acid and an alkali is called neutralisation:

 $H^+(aq) + OH^-(aq) \rightarrow H_2O(l)$

When an acid is added to water it dissociates releasing H^+ , hydrogen ions which is commonly called a proton as the hydrogen atom has lost an electron.

Different acids release different numbers of protons depending in their formulae. Acids that can release two protons are called di-basic acids, and those that can liberate three protons are called tri-basic acids.

(a) The Bronsted-Lowry theory of acids and bases defines an <u>acid as a proton donor</u> and it may only function as such when in the presence of a <u>proton acceptor – a base</u> e.g.

HCI	+	$NH_3 \rightarrow$	Cl ⁻ +	NH_4^+
Acid	r	Base	Conjugate	Conjugate
Proton dono		Proton acceptor	Base of HCI	Acid of NH3

Explain the meaning of the terms conjugate acid and conjugate base and how an acid-base pair are linked together.

(b) Reactions with Acids

(i) Acids Reacting with Metals

When an aqueous acid reacts with a metal a salt and hydrogen gas is produced. You must be able to write a balanced full equation and an ionic equation for these reactions involving common mineral acids such as sulfuric acid (H_2SO_4), nitric acid HNO₃, hydrochloric acid HCl and phosphoric acid (H_3PO_4)

ACID + METAL \rightarrow SALT + HYDROGEN

$$2\text{HCl}(aq) + 2\text{Na}(s) \rightarrow 2\text{NaCl}(aq) + \text{H}_2(g) \qquad \qquad \text{Full equation}$$
$$2\text{H}^+(aq) + 2\text{Cl}^+(aq) + 2\text{Na}(s) \rightarrow 2\text{Na}^+(aq) + 2\text{Cl}^+(aq) + \text{H}_2(g)$$

The spectator ions are removed from the equation. These are the ions that do not change their oxidation states during the reaction.

$2H^+(aq) + 2 Na(s) \rightarrow 2Na^+(aq) + H_2(g)$	lonic equation
---	----------------

(ii) Acids Reacting with Carbonates

ACID + METAL CARBONATE \rightarrow SALT + CARBON DIOXIDE + WATER

(iii) Acids Reacting with Bases

A base is a soluble metal oxide.

(iv) Acids Reacting with Alkalis

$\textbf{ACID} + \textbf{ALKLAI} \rightarrow \textbf{SALT} + \textbf{WATER}$

	$H_2SO_4(aq) 2NaOH(aq) \rightarrow Na_2SO_4(aq) + 2H_2O(I)$	Full equation
/		
		lonic equation

Answer questions I and 2 on page 137.

Answer the questions on Acids, bases and Buffers I.

I. Summary:

In no more than 150 words summarise the key points for these pages including chemical structures and diagrams where relevant.

Peer review comment:

Additional Notes/Questions:

Include any questions that you have on this section for your teacher to cover along with any additional notes you wish to make to support your revision.